Received 3 January 2006 Accepted 19 January 2006

Online 25 January 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mustafa Odabaşoğlu^a* and Orhan Büyükgüngör^b

^aDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ^bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.007 \text{ Å}$ R factor = 0.069 wR factor = 0.204 Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 3,6-Dioxaoctane-1,8-diammonium bis(trichloroacetate)

In the title compound, $C_6H_{18}N_2O_2^{2+}\cdot 2C_2Cl_3O_2^{-}$, the cation possesses a twofold rotation axis passing through the midpoint of the central C–C bond. Hydrogen-bonded rings are formed by two cations and two anions. The ions further form a three-dimensional network *via* N–H···O and N–H···Cl hydrogen bonds.

Comment

Intermolecular interactions, especially hydrogen bonds, are probably the most widely used interaction to generate supramolecularly organized organic systems with a variety of novel structural features (Prins *et al.*, 2001; Desiraju, 1995). Hydrogen bonding has been used effectively to predict and design supramolecular assemblies in one and two dimensions (Karle *et al.*, 1997). We have been interested in supramolecularly hydrogen-bonded systems formed by organic amines and carboxylic acids (Odabaşoğlu, Büyükgüngör & Lönnecke, 2003; Odabaşoğlu, Büyükgüngör, Turgut *et al.*, 2003; Odabaşoğlu & Büyükgüngör, 2006). The present work is part of a structural study of compounds of organic ammonium systems with hydrogen-bond donors and we report here the structure of the title compound, (I) (Fig. 1).

In compound (I), the cation possesses a twofold rotation axis passing through the mid-point of the central C-C bond. In (I), the 3,6-dioxaoctane-1,8-diammonium ions are linked to the trichloroacetate ions through $N-H\cdots O$ and $N-H\cdots Cl$ hydrogen bonds, resulting in the formation of hydrogenbonded rings (Fig. 2 and Table 2). The hydrogen-bonded rings are formed within a three-dimensional network. It is generally recognized that $N-H \cdots O$ bonds of the type $N^+ \cdots O^-$ with matching pK_a values of hydrogen-bond donor and acceptor groups are stronger than N-H···O bonds involving neutral acceptors and donors. These bonds traditionally are considered to be salt bridges and are termed low barrier hydrogen bonds or charge-assisted hydrogen bonds (Hess & Reinhardt, 1999). Accordingly, the strongest $N-H \cdots O$ hydrogen bonds are found in amine-carboxylates which possess linear hydrogen bonds, with an average N···O bond distance of 2.811 Å and an average $N \cdots O$ bond angle of 158°. The title compound has a slightly longer N-H···O bond distance and a slightly smaller $N-H \cdots O$ bond angle (average $N \cdots O$ bond distance = 2.835 Å and average bond angle $N-H \cdot \cdot \cdot O = 151^{\circ}$). In (I), the C3–N1 bonds are equal to a normal Csp^3-Nsp^3

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the ions of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 2, $y, -z + \frac{3}{2}$; (ii) $-x, y, -z + \frac{1}{2}$.]

single-bond length (Vaidhyanathan et al., 2002) but the C1-C2 bond is slightly longer than a normal C-C single bond. This elongation is attributed to the repulsive effect of electrons on the Cl and O atoms.

Experimental

The title compound was prepared by mixing 2-[2-(2-aminoethoxy)ethoxy]ethanamine and trichloroacetic acid in a 1:2 molar ratio in water at 353 K. Crystals of (I) were obtained by slow evaporation of the solvent (m.p. 380-381 K).

Crystal data

109 parameters

H-atom parameters constrained

$C_{6}H_{18}N_{2}O_{2}^{2+}.2C_{2}Cl_{3}O_{2}^{-}$ $M_{r} = 474.96$ Monoclinic, C2/c a = 22.1995 (19) Å b = 7.5606 (10) Å c = 11.9320 (12) Å $\beta = 91.188$ (7)° V = 2002.3 (4) Å ³ Z = 4	$D_x = 1.576 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 9773 reflections $\theta = 2.5-27.8^{\circ}$ $\mu = 0.89 \text{ mm}^{-1}$ T = 296 (2) K Plate, colourless $0.67 \times 0.45 \times 0.11 \text{ mm}$
Data collection	
Stoe IPDS-II diffractometer ω scans Absorption correction: integration (<i>X-RED32</i> ; Stoe & Cie, 2002) $T_{\min} = 0.611, T_{\max} = 0.898$ 9773 measured reflections 1976 independent reflections	1352 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 26.0^{\circ}$ $h = -27 \rightarrow 27$ $k = -9 \rightarrow 9$ $l = -14 \rightarrow 14$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.204$ S = 1.07 1976 reflections	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.091P)^{2} + 4.5621P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.71 \text{ e} \text{ Å}^{-3}$

```
\Delta \rho_{\rm max} = 0.71 \ {\rm e} \ {\rm A}
\Delta \rho_{\rm min} = -0.54 e Å
```


Figure 2

A partial packing diagram of the title compound, showing the hydrogenbonding scheme (dashed lines).

Table 1

Selected geometric parameters (Å, °).

1.216 (5)	C2-Cl2	1.765 (5)
1.219 (5)	C3-N1	1.484 (5)
1.565 (6)	C3-C4	1.486 (7)
1.750 (5)	C5-C5 ⁱ	1.461 (12)
1.757 (6)		
128.7 (4)	C1-C2-Cl1	107.2 (3)
116.6 (4)	Cl3-C2-Cl1	109.6 (3)
113.5 (3)		
	1.216 (5) 1.219 (5) 1.565 (6) 1.750 (5) 1.757 (6) 128.7 (4) 116.6 (4) 113.5 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry code: (i) $-x + 2, y, -z + \frac{3}{2}$.

Table 2	
Hydrogen-bond geometry (Å	, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H5C\cdots O2^{iii}$	0.89	1.95	2.788 (5)	157
$N1 - H5D \cdot \cdot \cdot O1^{iv}$	0.89	2.11	2.878 (5)	143
$N1 - H5E \cdots O1^{v}$	0.89	2.02	2.838 (5)	152
$N1 - H5E \cdot \cdot \cdot Cl2^v$	0.89	2.69	3.343 (4)	131

Symmetry codes: (iii) x, y + 1, z; (iv) -x + 2, -y + 1, -z + 1; (v) $x, -y + 1, z + \frac{1}{2}$.

All H atoms were refined using a riding model, with C-H = 0.97 Å $[U_{iso}(H) = 1.2U_{eq}(\text{parent atom})]$ for methylene C atoms and N-H = 0.89 Å $[U_{iso}(H) = 1.5U_{eq}(\text{parent atom})]$ for ammonium N atoms.

Data collection: X-AREA (Stoe & Cie, 2002): cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Hess, R. A. & Reinhardt, L. A. J. (1999). J. Am. Chem. Soc. 121, 9867–9870.Karle, I. L., Ranganathan, D. & Haridas, V. (1997). J. Am. Chem. Soc. 119, 2777–2783.
- Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o236-o238.
- Odabaşoğlu, M., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o51–o52.
- Odabaşoğlu, M., Büyükgüngör, O., Turgut, G., Karadağ, A., Bulak, E. & Lönnecke, P. (2003). J. Mol. Struct. 648, 133–138.
- Prins, L. J., Timmerman, P. & Reinhoudt, D. N. (2001). J. Am. Chem. Soc. 123, 10153–10163.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133.